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ABSTRACT  
We consider the problem of estimating the location and velocity of a moving target using a distributed 
sensor network. We first present the maximum likelihood estimator (MLE) using received signals, when the 
source signal is unknown and modelled as a deterministic process. Since the MLE requires a multi-
dimensional search and is computationally intensive, we also develop an efficient algorithm using a two-step 
approach. The first step finds the time-difference-of-arrival (TDOA) and frequency-difference-of-arrival 
(FDOA) estimates of each sensor with respect to a reference sensor by using a 2-dimensional fast Fourier 
transform, while the second step employs an iterative re-weighted least squares (IRLS) approach with a 
varying weighting matrix to determine the target location and velocity. Numerical results show that the IRLS 
approach has a lower signal-to-noise ratio (SNR) threshold compared with a recent TDOA/FDOA-based 
method, especially when the target is considerably farther away from some sensors than others, which 
creates a larger disparity in the quality of radar observations. 

1.0 INTRODUCTION 

Target localization is a fundamental signal processing problem encountered in a wide range of sensing and 
surveillance applications. Maximum likelihood estimation based on a suitable coherent signal model is a 
popular approach for developing high-resolution localization solutions. One such method, based on a 
coherent delay and Doppler model, was introduced in [1], which estimates the location of the target directly 
from the signal measurements by assuming the target signal is a stochastic process with known statistics. 
When the target is moving, time-difference-of-arrival (TDOA) and frequency-difference-of-arrival (FDOA) 
measurements can be utilized to determine the target location and velocity. However, since both the TDOA 
and FDOA are non-linearly dependent on the target location and velocity, localizing a moving target from 
TDOA and FODA measurements is a challenging problem. One way to deal with the non-linearity is to 
introduce redundant parameters in the TDOA and FDOA versus target location and velocity relation. An 
algebraic solution for the position and velocity of the moving target was proposed in [2] by employing 
redundant parameters to linearize the non-linear estimation problem. However, the redundant parameter-
based approach leads to considerable bias caused by the noise correlation between the regressor and 
regressand in the formulation. To address the issue, an extension of [2] was presented in [3], which exploits a 
relation between the redundant parameters and the target position/velocity to refine the solution. Another 
approach is to directly solve the non-linear estimation problem by using non-linear optimization methods [4], 
[5]. For example, [5] solved the non-linear localization problem in two steps. In each step, a non-linear 
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weighted least squares problem using TDOA estimates (first step), or both TDOA and FDOA estimates 
(second step), was formulated and solved, followed by bias reduction. 

Most TDOA/FDOA based methods require the covariance matrix of the TDOA and FDOA estimates for 
weighted least squares fitting. The covariance matrix is often unknown in practice since it depends on radar-
to-target distances and signal/noise statistics. In this paper, we consider moving target localization using 
passive radar. We first consider a direct signal-based approach and derive the maximum likelihood estimator 
(MLE) of the target location and velocity, assuming the target waveform is unknown and modeled as a 
deterministic process. The MLE obtains the target location and velocity estimates through a search procedure 
over the parameter space. While asymptotically optimum, the MLE may be practically infeasible in some 
scenarios with a large number of observations due to its complexity. To address the issue, we propose a 
computationally more efficient two-step method based on TDOA/FDOA estimates. In the first step, we 
obtain the TDOA and FDOA estimates from the signal measurements by using a two-dimensional (2-D) fast 
Fourier transform (FFT). In the second step, we use an iterative reweighted least squares (IRLS) process to 
find the location and velocity of the target from the TDOA and FDOA estimates, each iteration involving a 
closed-form update of the parameters. The IRLS is seen to usually converge in a few iterations. 

2.0 DATA MODEL 

We consider a distributed sensor radar network, where M widely separated sensors are utilized to receive the 
signal reflected by a target which is located on a 2-D plane at [ , ]Tx y=u  and moving with a velocity 

[ , ]T
x yv v=v . The coordinates of the -thm  sensor are ( , ), 1, ,2, .m mx y m M…=  Assume the first sensor is 

selected as the reference sensor. Let 1N×∈s  denote the unknown source waveform observed at senor 1, 
where N  denotes the number of samples obtained over the observation window. Then the signals observed 
at the other sensors over the same observation window can be written as: 

 1 1( ) , ,, , 2,m m m m mf m Mα τ + = …=r Φ s w   (1) 

where mα  denotes the target amplitude that integrates the radar cross section (RCS), the antenna gain and 
channel propagation attenuation, Φ  is an N N×  delay and Doppler shifting matrix controlled by the TDOA 

1 1m mτ τ τ−=  and FDOA 1 1m mff f−= , and mw  denotes the observation noise which is assumed zero-mean 
and Gaussian with covariance matrix 2σ I . Here, mτ  and mf  denote the time of arrival and Doppler 
frequency observed by the -thm  sensor. The delay/Doppler shifting matrix can be expressed as [6]: 

1 1 1 1( , ) ( ) ( )H
m m m s mTf f fτ τ= − ∆Φ W T W T , where T  denotes the N N× unitary discrete Fourier transform 

(DFT) matrix while ( )aW  is a diagonal matrix with the -thn  diagonal entry given by 2 ( 1)j n ae π − . The 
problem of interest is to estimate the location u  and the velocity v  of the moving target by using 
observations from the M  sensors. 

3.0 PROPOSED APPROACHES 

We first present the maximum likelihood estimator (MLE), which is optimum but computationally costly, and 
then propose an efficient iteratively re-weighed least squares (IRLS) method based on TDOAs and FDOAs.  

3.1 MLE 
The MLE can be obtained by jointly maximizing the likelihood function of the received signals 

1 2[ , , , ]T T T
M…r r r  with respect to the unknown parameters, which include the target location/velocity u  and 
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,v target amplitude 1[ , , ]Mα α= …α , source waveform ,s and noise variance 2.σ  It can be shown the MLE 
of u  and v  can be found by maximizing the largest eigvenvalue of the Gram matrix :HZ Z   

  
, max{ , } arg max ( ),Hλ= u vu v Z Z   (2) 

where 1 21 2 1[ ],H H
MM=Z r Φ r Φ r  The maximization requires a 4-dimensional (4-D) search, which is 

computationally intensive. Once the estimates of u and v are found, the other parameters can be estimated 
fairly easily. Specifically, s  is given by the eigenvector of HZ Z  associated with the largest eigenvector, 
while estimates of α and 2σ can be obtained by least squares.  

3.2 Iteratively Re-weighed Least Squares (IRLS) 
The proposed IRLS algorithm uses the TDOA and FDOA measurements of sensors 2 to M  with respect to 
the reference sensor 1. The TDOA and FDOA can be efficiently computed by using the 2-D FFT based 
approach introduced in [6]. Let the resulting TDOA and FDOA estimated be denoted by 1ˆmτ  and 1m̂f . 
Consider the range difference 1md  between the -thm sensor and the reference sensor, which can be 
determined from the TDOA: 

 2 2 2 2
1 1 1 1 1( ) ( ) ( ) ( ) ( ) , 2,3, , .m m m m md x x y y x x y y c c m Mτ τ τ= − + − − − + − = − = = …   (3) 

Let 21 31 1
ˆ ˆ ˆˆ [ , , , ]T

Md d d= …d  which contain measured range differences obtained from the TDOA estimates. 
We have 

  ( ) ,u= +d g u e   (4) 

where ue  is the range difference estimation error for the range difference and 

32( ) [ ( ), ( ), , ( )]M
Tg g g= …g u u u u  is the noise-free range difference 1( ) ,m mg d=u  which is a non-linear 

function of the target location parameter u . Let ( 1) ( 1) ( 1)[ , ]l l l Tx y− − −=u  denote the location estimate obtained 
from the ( 1)-thl −  iteration. Applying the first-order Taylor expansion of ( )g u  at ( 1)l−u  yields 

  ( 1) ( 1) ( )( ) ,l l l
p u

− −≈ + ∆ +d g u G u e   (5) 

where ( ) ( ) ( )[  ]l l l Tx y∆ = ∆ ∆u  and ( 1)l
p
−G  denotes the ( ) 21M − ×  Jacobian matrix of ( )g u  computed at ( 1)l−u . 

It follows from the linear model that ( )l∆u  can be obtained by a weighted least squares fitting 

 ( ) ( 1) ( 1) ( 1) 1 ( 1) ( 1) ( 1)( ) ,( ) ( )l l H l l l H l l
p u p p u
− − − − − − −∆ = −u G R G G R d g u   (6) 

where ( 1)l
u
−R  is a weighting matrix. We employ a varying diagonal weighting matrix with diagonal elements 

given by ( 1) 2
1

ˆ[ )( ]l
m md − −− g u . Once ( )l∆u  is obtained, the target location is updated by ( ) ( 1) ( ) .l l l−= + ∆u u u  

The iterative process ends when ( )l∆u  is smaller than a pre-specified tolerance level ε . 

Once the target location estimate is obtained, we can find the target velocity estimate by utilizing a similar 
iterative reweighted procedure. Let 1md  denote the range rate difference between the m -th sebsir and the 
reference, which can be determined from the FDOA: 
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1 11
1 1

1

( ) ( ) ( ) ( )
, 2,, , .x m y m x ym

m m
m

v x x v y y v x x v y yd dd f m M
t t d d

λ
− + − − + −∂ ∂

= − = − = − = …
∂ ∂

   (7) 

Let 21 31 1
ˆ ˆ ˆˆ [ , , ], T

Md d d= …d    contain range rate difference vector obtained from FDOA estimates. We have 

 ˆ ,v= +ud H v e   (8) 

where ve  is the estimation error for the range rate difference vector d̂  and uH is an ( ) 21M − × matrix with 

the ( 1)-thm −  given by 1 1

1 1

m m

m m

x x y yx x y y
d d d d
− −− − − −  , , .2,m M= …  We use the target location estimate u  to 

form ˆ
uH . Let ( 1) ( 1) ( 1)[ , ]l l l T

x yv v− − −=v  denote the results from the ( 1)l − -th iteration. We obtain 

 ( ) ( ) 1 ( ) ˆˆ ˆ ˆ ,[ ]l H − − −= l 1 l 1
u v u u vv H R H H R d   (9) 

where ( )−l 1
vR  is the diagonal weighting matrix with diagonal elements ( 1) 2

1
ˆ ˆ[ ]( ( ,:) l

md m − −− uH v , with 
ˆ (m,:)uH  denoting the -thm row of matrix ˆ

uH . The iteration of finding the estimate of the target velocity v  
ends when ( ) ( 1)l l−−v v  is smaller than the tolerance level ε . 

Remark: Due to different sensor-to-target distances, the measurements of the TDOAs and FDOAs are of 
different quality. It is crucial to take such differences into account in estimating the target location and 
velocity. A standard approach to dealing with this problem is to use the inverse of the covariance matrix of 
the TDOA and FDOA estimates as a weighting matrix (e.g., [2]). In practice, the covariance matrix depends 
on the sensor-to-target geometry and is usually unknown a priori. To address this issue, we employ practical 
weighting matrices (6) and (9) that are readily computable. Intuitively, if the m -th sensor is close to the 
target, it is expected that the range difference fitting error 1

ˆ ( )m mgd − u  is small, and so is the range rate 
difference fitting error. As such a larger weight is applied to this sensor than those with poorer measurement 
quality. Through this process, the proposed iterative reweighted scheme is able to perform automatic sensor 
selection. 

4.0 SIMULATION RESULTS 

We consider a distributed radar network depicted in Figure 1(a) that consists of 8M =  sensors uniformly 
spaced on a circle with a radius of 33.33 scT , where c  and sT  denote the signal propagation speed and 
sampling interval, respectively. 
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(a) 

  
(b) (c) 

Figure 1: (a) A distributed radar network with M = 8 sensors. Location (upper) and velocity 
(lower) estimate versus SNRr for (b) Case 1, and (c) Case 2. 

The signal-to-noise ratio (SNR) for the -thm sensor is defined as: 
2 2

1
2 2

| |SNR SNR ,m

m

d
m rd

α

σ
= =  where md  is the 

distance from the target to the -thm sensor and rSNR  is the SNR for the reference sensor (sensor 1). Two 
cases are considered. In Case 1 (small SNR spread), the target is located at [4 ,6 ,]T

s scT cT=u  which is 
relatively close to the center of the circle. This results in similar distances between different sensors and the 
target and, in turn, a small SNR spread for all sensors. In Case 2 (large SNR spread), the target is located at 

[19.33 ,23.33 ,]T
s scT cT=u  which is close to one particular sensor (the reference), leading to a larger SNR 

spread among all sensors. Moreover, for both cases, we assume the target is moving with a velocity 
7 7[6 10 ,6.66 10 .]Tc c− −= × ×v  In the simulation, we assume 83 10 / ,c m s= ×  carrier frequency is 3 GHz, and 

the sampling frequency 1 / 200sT =  kHz.  
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We compare the IRLS with the MLE in and NWLS-BiasSub method [5]. Two versions of the MLE with 
different initialization schemes are considered. For MLE (init-1), the initial target location/velocity is 
obtained by intersecting the hyperbolas associated with two best TDOA measurements along with least-
squares estimate of the velocity based on (8), while MLE (init-2) initialized by the true target location and 
velocity. In addition, the Cramer-Rao Bound (CRB) is included in the comparison, to benchmark the 
estimation performance.  

Figure 1(b) shows the root-mean-square error (RMSE) of the above methods along with the CRB versus 
SNR for the reference sensor in Case 1. It is seen that for both location and velocity estimation, there is a 
threshold effect, whereby the RMSE is far away from the CRB until the SNR is above a threshold [12]. 
The results show that all methods approach the CRB at the high SNR region, but with different thresholds. 
For example, the proposed IRLS is about 2 dB better than NWLS-BiasSub for both location and velocity 
estimation. MLE (init-1) is similar to IRLS for location estimation, but has a higher threshold than IRLS 
for velocity estimation. This is because MLE is a search-based method subject to local convergence 
caused by inaccurate initialization. With ideal (but impractical) initialization, MLE (init-2) is the best 
among all methods. Figure 1(c) shows the results in Case 2. With a larger SNR spread, i.e., when the 
sensors are more different in terms of measurement quality, the proposed IRLS enjoys a larger benefit in 
SNR threshold, which is reduced by 4 to 5 dB compared with NWLS-BiasSub. MLE (init-1) appears to 
experience a more severe local convergence problem, yielding a significantly higher threshold than that of 
IRLS for both location and velocity estimation. 

5.0 CONCLUSION 

We examined moving target localization using a distributed sensor network, where the target reflects an 
unknown source signal to radars. We first presented an MLE approach, based on direct received signals, 
which is asymptotically optimum but whose complexity grows rapidly with the observation size. For 
practical implementations, we also proposed a computationally more efficient TDOA/FDOA-based IRLS 
method that employs a 2-D FFT and iterative re-weighting method to solve the problem. Numerical results 
show that IRLS approach has a lower SNR threshold and compares favorably with a recent TDOA/FDOA-
based solution, in particular when the SNR observed at different radars exhibits a large spread. 
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